Ohio State nav bar

EEOB Publication - Bennett & Hopkins

February 5, 2024

EEOB Publication - Bennett & Hopkins

EEOB publication graphic

Fire season and time since fire determine arbuscular mycorrhizal fungal trait responses to fire

Jacob R. Hopkins, Thomas P. McKenna & Alison E. Bennett. Plant Soil (2024). Link to article.

Abstract

Background and aims
Arbuscular mycorrhizal (AM) fungi are common mutualists in grassland and savanna systems that are adapted to recurrent fire disturbance. This long-term adaptation to fire means that AM fungi display disturbance associated traits which should be useful for understanding environmental and seasonal effects on AM fungal community assembly.

Methods
In this work, we evaluated how fire effects on AM fungal spore traits and community composition vary with fire season (Fall vs. Spring) and time since fire. We tested this by analyzing AM fungal spore traits (e.g., colorimetric, sporulation, and size) from a fire regime experiment.

Results
Immediately following Fall and Spring fires, spore pigmentation darkened (became less hyaline); however, this trait response was not linked to fire driven changes in spore community composition and likely implies a plastic spore pigmentation response to fire. Six months after Fall fires, spores in burned plots were lower in volume, produced less color rich pigment, and had higher sporulation rates, and these differences in spore traits were associated with shifts in AM fungal spore communities demonstrating environmental filtering.

Conclusion
Fire drove plastic and longer-term changes in AM fungal spore traits and community assembly that varied with fire season (stronger effects in Fall) and time since fire. This demonstrates the utility of applying trait-based approaches to microbial community assembly, and the importance of considering changes in community assembly across time.