Ohio State nav bar

EEOB Publication - Lanno

January 19, 2024

EEOB Publication - Lanno

EEOB publication graphic

Acute toxicity and bioaccumulation of common urban metals in Bombus impatiens life stages

Sarah B. Scotta, Roman Lanno, Mary M. Gardiner. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2024.169997

ABSTRACT  

Metal contamination is ubiquitous in urban areas and represents a risk to arthropod species. Bees are exposed to metals while foraging within contaminated landscapes from multiple sources. Eliminating the risk of bee exposure to metals is complex, and requires an understanding of how bees become contaminated, how metals accumulate within bee bodies, and how this exposure influences their health. We selected Bombus impatiens, the common eastern bumble bee, as our focal species because it is the most frequently encountered bumble bee species in the eastern United States and common within urban greenspaces. The aims of this study were to quantify the lethal concentration exposure limit (LC50) for B. impatiens foragers, assess the bioaccumulation ability of environmentally relevant concentrations of common urban metals in adults, larvae, and pupae, and compare the LC50 values against field relevant concentrations collected by foraging bumble bees within a legacy city. Bumble bees were orally exposed to arsenic oxide, cadmium chloride, or chromium oxide in sucrose solution to encourage consumption. The LC50 for arsenic (As2O3 36.4 mg/L), cadmium (CdCl2 10.3 mg/L), and chromium (CrO3 189.6 mg/L) are 202×, 79×, and 1459×greater than concentrations found within urban bumble bee collected provisions, respectively. Adult bumble bees fed field realistic concentrations of metals accumulate significant amounts of cadmium and lead within their bodies, but do not accumulate chromium and arsenic. Additionally, adults accumulate significantly higher concentrations of metals than brood. While bumble bee foragers are unlikely to encounter lethal metal concentrations while foraging in contaminated landscapes, it is crucial to consider and understand how sublethal concentrations impact overall colony functioning. The results from this study highlight the need to identify hazards and bioaccumulation ability of common metals as bees respond differently to each metal species, as well as the impacts of metal mixtures on bioaccumulation and toxicity.