Publications by EEOB faculty September 1 - September 30

September 22, 2015
osu logo stacked

Post-embryonic development in the mite suborder Opilioacarida, with notes on segmental homology in Parasitiformes

Klompen, H., Vázquez, M.M. & Bernardi, L.F.d.O. 2015. Experimental & Applied Acarology, 67(2):183-207.


In order to study homology among the major lineages of the mite (super)order Parasitiformes, developmental patterns in Opilioacarida are documented, emphasizing morphology of the earliest, post-embryonic instars. Developmental patterns are summarized for all external body structures, based on examination of material in four different genera. Development includes an egg, a 6-legged prelarva and larva, three 8-legged nymphal instars, and the adults, for the most complete ontogenetic sequence in Parasitiformes. The prelarva and larva appear to be non-feeding. Examination of cuticular structures over ontogeny allows development of an updated model for body segmentation and sensillar distribution patterns in Opilioacarida. This model includes a body made up of a well-developed ocular segment plus at most 17 additional segments. In the larvae and protonymphs each segment may carry up to six pairs of sensilla (setae or lyrifissures) arranged is distinct series (J, Z, S, Sv, Zv, Jv). The post-protonymphal instars add two more series (R and Rv) but no extra segments. This basic model is compatible with sensillar patterns in other Parasitiformes, leading to the hypothesis that all taxa in that (super)order may have the same segmental ground plan. The substantial segmental distortion implied in the model can be explained using a single process involving differential growth in the coxal regions of all appendage-bearing segments.

Can 13C stable isotope analysis uncover essential amino acid provisioning by termite-associated gut microbes?


Gut-associated microbes of insects are postulated to provide a variety of nutritional functions including provisioning essential amino acids (EAAs). Demonstrations of EAA provisioning in insect-gut microbial systems, nonetheless, are scant. In this study, we investigated whether the eastern subterranean termite Reticulitermes flavipes sourced EAAs from its gut-associated microbiota. δ13CEAA data from termite carcass, termite gut filtrate and dietary (wood) samples were determined following 13C stable isotope analysis. Termite carcass samples (−27.0 ± 0.4‰, mean ± s.e.) were significantly different from termite gut filtrate samples (−27.53 ± 0.5‰), but not the wood diet (−26.0 ± 0.5‰) (F(2,64) = 6, P < 0.0052). δ13CEAA-offsets between termite samples and diet suggested possible non-dietary EAA input. Predictive modeling identified gut-associated bacteria and fungi, respectively as potential major and minor sources of EAAs in both termite carcass and gut filtrate samples, based on δ13CEAA data of four and three EAAs from representative bacteria, fungi and plant data. The wood diet, however, was classified as fungal rather than plant in origin by the model. This is attributed to fungal infestation of the wood diet in the termite colony. This lowers the confidence with which gut microbes (bacteria and fungi) can be attributed with being the source of EAA input to the termite host. Despite this limitation, this study provides tentative data in support of hypothesized EAA provisioning by gut microbes, and also a baseline/framework upon which further work can be carried out to definitively verify this function.

Social status influences responses to unfamiliar conspecifics in a cooperatively breeding fish

Isaac Y. Ligocki, Adam R. Reddon, Jennifer K. Hellmann, Constance M. O’Connor, Susan Marsh-Rollo, Sigal Balshine and Ian M. Hamilton. 2015. Behaviour. DOI: 10.1163/1568539X-00003306


In group living animals, individuals may visit other groups. The costs and benefits of such visits for the members of a group will depend on the attributes and intentions of the visitor, and the social status of responding group members. Using wild groups of the cooperatively breeding cichlid fish ( Neolamprologus pulcher), we compared group member responses to unfamiliar ‘visiting’ conspecifics in control groups and in experimentally manipulated groups from which a subordinate the same size and sex as the visitor was removed. High-ranking fish were less aggressive towards visitors in removal groups than in control groups; low-ranking subordinates were more aggressive in the removal treatment. High-ranking females and subordinates the same size and sex as the visitor responded most aggressively toward the visitor in control groups. These results suggest that visitors are perceived as potential group joiners, and that such visits impose different costs and benefits on current group members.

Aquaporins in the Antarctic Midge, an Extremophile that Relies on Dehydration for Cold Survival

Shin G. Goto, Richard E. Lee Jr. and David L. Denlinger. 2015. Biological Bulletin. 229:6-23.


The terrestrial midge Belgica antarctica relies extensively on dehydration to survive the low temperatures and desiccation stress that prevail in its Antarctic habitat. The loss of body water is thus a critical adaptive mechanism employed at the onset of winter to prevent injury from internal ice formation; a rapid mechanism for rehydration is equally essential when summer returns and the larva resumes the brief active phase of its life. This important role for water movement suggests a critical role for aquaporins (AQPs). Recent completion of the genome project on this species revealed the presence of AQPs in B. antarctica representing the DRIP, PRIP, BIB, RPIP, and LHIP families. Treatment with mercuric chloride to block AQPs also blocks water loss, thereby decreasing cell survival at low temperatures. Antibodies directed against mammalian or Drosophila AQPs suggest a wide tissue distribution of AQPs in the midge and changes in protein abundance in response to dehydration, rehydration, and freezing. Thus far, functional studies have been completed only for PRIP1. It appears to be a water-specific AQP, but expression levels are not altered by dehydration or rehydration. Functional assays remain to be completed for the additional AQPs.